Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1181492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252242

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a common food-borne pathogen that commonly causes gastroenteritis in humans and animals. Apis laboriosa honey (ALH) harvested in China has significant antibacterial activity against Staphylococcus aureus, Escherichia coli, and Bacillus subtilis. We hypothesize that ALH has antibacterial activity against S. Typhimurium. The physicochemical parameters, minimum inhibitory and bactericidal concentrations (MIC and MBC) and the possible mechanism were determined. The results showed that there were significantly different physicochemical parameters, including 73 phenolic compounds, among ALH samples harvested at different times and from different regions. Their antioxidant activity was affected by their components, especially total phenol and flavonoid contents (TPC, TFC), which had a high correlation with antioxidant activities except for the O2- assay. The MIC and MBC of ALH against S. Typhimurium were 20-30% and 25-40%, respectively, which were close to those of UMF5+ manuka honey. The proteomic experiment revealed the possible antibacterial mechanism of ALH1 at IC50 (2.97%, w/v), whose antioxidant activity reduced the bacterial reduction reaction and energy supply, mainly by inhibiting the citrate cycle (TCA cycle), amino acid metabolism pathways and enhancing the glycolysis pathway. The results provide a theoretical basis for the development of bacteriostatic agents and application of ALH.

2.
Genome Biol Evol ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36799935

RESUMO

There have been many population-based genomic studies on human-managed honeybees (Apis mellifera and Apis cerana), but there has been a notable lack of analysis with regard to wild honeybees, particularly in relation to their evolutionary history. Nevertheless, giant honeybees have been found to occupy distinct habitats and display remarkable characteristics, which are attracting an increased amount of attention. In this study, we de novo sequenced and then assembled the draft genome sequence of the Himalayan giant honeybee, Apis laboriosa. Phylogenetic analysis based on genomic information indicated that A. laboriosa and its tropical sister species Apis dorsata diverged ∼2.61 Ma, which supports the speciation hypothesis that links A. laboriosa to geological changes throughout history. Furthermore, we re-sequenced A. laboriosa and A. dorsata samples from five and six regions, respectively, across their population ranges in China. These analyses highlighted major genetic differences for Tibetan A. laboriosa as well as the Hainan Island A. dorsata. The demographic history of most giant honeybee populations has mirrored glacial cycles. More importantly, contrary to what has occurred among human-managed honeybees, the demographic history of these two wild honeybee species indicates a rapid decline in effective population size in the recent past, reflecting their differences in evolutionary histories. Several genes were found to be subject to selection, which may help giant honeybees to adapt to specific local conditions. In summary, our study sheds light on the evolutionary and adaptational characteristics of two wild giant honeybee species, which was useful for giant honeybee conservation.


Assuntos
Adaptação Fisiológica , Metagenômica , Abelhas/genética , Animais , Humanos , Filogenia , Adaptação Fisiológica/genética , China , Demografia
3.
Insects ; 12(7)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34357312

RESUMO

In Pakistan, Apis cerana, the Asian honeybee, has been used for honey production and pollination services. However, its genomic makeup and phylogenetic relationship with those in other countries are still unknown. We collected A. cerana samples from the main cerana-keeping region in Pakistan and performed whole genome sequencing. A total of 28 Gb of Illumina shotgun reads were generated, which were used to assemble the genome. The obtained genome assembly had a total length of 214 Mb, with a GC content of 32.77%. The assembly had a scaffold N50 of 2.85 Mb and a BUSCO completeness score of 99%, suggesting a remarkably complete genome sequence for A. cerana in Pakistan. A MAKER pipeline was employed to annotate the genome sequence, and a total of 11,864 protein-coding genes were identified. Of them, 6750 genes were assigned at least one GO term, and 8813 genes were annotated with at least one protein domain. Genome-scale phylogeny analysis indicated an unexpectedly close relationship between A. cerana in Pakistan and those in China, suggesting a potential human introduction of the species between the two countries. Our results will facilitate the genetic improvement and conservation of A. cerana in Pakistan.

4.
J Insect Sci ; 21(4)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34214154

RESUMO

The hexagonal structure of the honey bee comb cell has been the source of many studies attempting to understand its structure and function. In the storage area of the comb, only honey is stored and no brood is reared. We predicted that honey bees may construct different hexagonal cells for brood rearing and honey storage. We used quantitative analyses to evaluate the structure and function of the natural comb cell in the Chinese bee, Apis cerana cerana and the Italian bee, A. mellifera ligustica. We made cell molds using a crystal glue solution and measured the structure and inclination of cells. We found that the comb cells of A. c. cerana had both upward-sloping and downward-sloping cells; while the A. m. ligustica cells all tilted upwards. Interestingly, the cells did not conform to the regular hexagonal prism structure and showed irregular diameter sizes. In both species, comb cells also were differentiated into worker, drone and honey cells, differing in their diameter and depth. This study revealed unique differences in the structure and function of comb cells and showed that honey bees design their cells with precise engineering to increase storage capacity, and to create adequate growing room for their brood.


Assuntos
Abelhas , Comportamento de Nidação , Ceras , Animais , Biometria , Feminino , Especificidade da Espécie
5.
PLoS One ; 8(10): e79026, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24194958

RESUMO

In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER) assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources.


Assuntos
Abelhas/fisiologia , Comportamento Alimentar/fisiologia , Sacarose/farmacologia , Adaptação Biológica/fisiologia , Análise de Variância , Animais , China , Comportamento Alimentar/efeitos dos fármacos , Néctar de Plantas , Pólen , Especificidade da Espécie
6.
Yi Chuan ; 34(8): 1057-63, 2012 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-22917911

RESUMO

The sequences of mitochondrial ND2, CO2, and 16S rRNA genes and nuclear ITPR gene were obtained from 22 samples of 5 Apis species from China. The characteristics of the sequences and the pairwise distances among species were analyzed. Phylogenetic trees were reconstructed for Apis species using maximum parsimony, neighbor-joining and maximum likelihood methods together with the sequences of the other 4 Apis species downloaded from GenBank. Results supported that Apis species were divided into three major clusters: dwarf bees (A. florea and A. andreniformis), giant bees (A. dorsata and A. laboriosa), and cavity-nesting bees (A. mellifera, A. cerana, A. koschevnikovi, A. nigrocinta, and A. nuluensis). The dwarf honey bees were confirmed as basal lineage. Our study also revealed a high level of genetic divergence between A. dorsata from Hainan Island and China mainland.


Assuntos
Sequência de Bases , Abelhas/genética , DNA Mitocondrial/genética , Genes de Insetos , Proteínas de Insetos/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Animais , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...